

A one pot method of conversion of aldehydes into nitriles using iodine in ammonia water: Synthesis of 2-chloro-3-cyanoquinolines

Shraddha Upadhyay, Atish Chandra & Radhey M Singh*

Department of Chemistry, Faculty of Science,
Banaras Hindu University, Varanasi 221 005, India.
E-mail: rmohan@bhu.ac.in

Received 1 January 2008; accepted (revised) 3 November 2008

One pot rapid transformations of heteroaromatic carbaldehyde to cyano group using cheap and easily available iodine in aqueous ammonia has been described.

Keywords: One pot, oxidant, nitrile, transformation, 2-chloro-3-formyl-quinolines

In organic synthesis functional group transformations have significant importance¹. Amongst, nitriles, represent an important reagents for organic synthesis, have been attracted great attention to chemist for long time because of their transformation into variety of heterocycles such as thiazoles^{2a}, 2-oxazolines^{2b-c}, tetrazoles^{2d}, imidazoles^{2e}, triazoloannulatedpyrimidines^{2f} and others^{2g-h}. Formations of nitriles from the corresponding aldehydes are an important functional group transformation. Methods known in the literature either involve the initial conversion of aldehydes to aldoximes followed by dehydration³ to give nitriles or direct conversion of aldehydes into nitriles without isolation of nitrogen containing intermediates, by treating with variety of chemicals⁴. The use of ammonia combined with different oxidants such as oxygen⁵, lead tetraacetate⁶, iodine⁷ and hydrogen peroxide⁸, is considered amongst an appropriate method for the transformation of aliphatic and aromatic aldehydes to their corresponding nitriles. These observations inspired us to investigate the transformation of 3-quinolinylformaldehyde **1a** to 3-quinolinylnitrile **2a** (ref.9f) in aqueous ammonia with easily available oxidants.

In continuation to the studies in carbo/hetero annulatedquinolines synthesis⁹ from 2-chloro-3-formylquinolines **1a**. 2-chloro-3-cyanoquinolines **2a** is required to explore analogous reactions on them for synthesis of carbo/hetero annulatedquinolines. Thus, in this paper one pot synthesis of 2-chloro-3-cyanoquinolines from 2-chloro-3-formylquinolines in

aqueous ammonia using cheap and easily available iodine as oxidant is described.

The reaction of 2-chloro-3-formylquinoline **1a** with iodine in aqueous ammonia was chosen as model and the reaction condition was optimized. It is found that reaction proceeded well and completed in a short period at RT. The better yield of product, 2-chloro-3-cyanoquinoline **2a**, was obtained by using 6 mL of aqueous ammonia (30% solution, **Table I**). Thus, the reaction of 2-chloro-3-formylquinoline **1a** in THF (5 mL) was treated with aqueous ammonia (6 mL) and iodine (1.1 mmole) at RT for 75 minutes to afford the desired nitrile **2a** in good yield. The structure of compound **2a** was characterized from its NMR and IR spectra. The ¹H NMR spectrum of compound **2a** showed absence of formyl peak at δ 10.5 and its IR spectrum showed absence of carbonyl absorption at 1687 cm^{-1} and presence of weak absorption of nitrile group at 2226 cm^{-1} . After optimizing reaction conditions for transformation of **1a** into **2a**, reaction of other substrates **1b-k** were carried out. These afforded the corresponding nitriles **2b-k** in a short time (20-85 min) in good yields (**Table I**).

In summary, a general and simple method for the transformation of carbaldehydes into nitriles in a better yield in aqueous medium is described using cheap and easily available reagents.

Experimental Section

Melting points were measured in an open capillary tube with a Buchi melting point apparatus and are uncorrected. Elemental analysis was obtained using Perkin-Elmer 240C CHN-analyzer. IR spectra were recorded on a FT/IR-5300 (JASCO) spectrophotometer; ¹H NMR spectra in $\text{CDCl}_3/\text{DMSO}-d_6$ at 300 MHz on a Jeol AL-300 spectrometer (chemical shifts in δ ppm) relative to TMS as an internal standard. Reactions were monitored by TLC, using silica gel $\text{PF}_{254+366}$ as an adsorbent and ethyl acetate-hexane in different ratios as eluent.

General method for conversion of carbaldehyde into nitrile

To a stirred solution of formyl compound (1 mmole) in THF (5 mL) was added aq. NH_3 (30%, 6 mL) followed by sublimed I_2 (1.1 mmole) and stirred the reaction- mixture at RT for the mentioned period

Table I — Conversion of carbaldehyde into nitrile

Entry	Substrate	Product	Time (min)	Yield (%)
1		2a	75	82
2		2b	72	80
3		2c	20	78
4		2d	68	80
5		2e	85	83
6		2f	72	79
7		2g	60	80
8		2h	75	73
9		2i	68	77
10		2j	50	67

(**Table I**). The dark violet/brown solution became colourless after completion of reaction (checked by TLC). The reaction-mixture was treated with aqueous $\text{Na}_2\text{S}_2\text{O}_3$ solution (5 mL of 5% solution) and extracted with ethyl acetate. The solution was dried, filtered and evaporated under vacuum to give pure nitrile product.

2-Chloro-3-cyanoquinoline, 2a: Yield 82%, m.p. 144–45°C; IR (KBr): 2226 cm^{-1} ; ^1H NMR (CDCl_3): δ 7.70 (t, $J = 7.8\text{ Hz}$, 7-H), 7.90 (d, $J = 8.1\text{ Hz}$, 5-H), 7.92 (t, $J = 8.1\text{ Hz}$, 6-H), 8.09 (d, $J = 8.1\text{ Hz}$, 8-H), 8.57 (s,

4-H); Anal. Calcd for $\text{C}_{10}\text{H}_5\text{N}_2\text{Cl}$: C, 63.82; H, 2.68; N, 14.90. Found: C, 63.75; H, 2.70; N, 14.82%.

6-Methyl-2-chloro-3-cyanoquinoline, 2b: Yield 80%, m.p. 142–45°C; IR (KBr): 2228 cm^{-1} ; ^1H NMR (CDCl_3): δ 2.58 (s, CH_3), 7.65 (s, 5-H), 7.73 (d, $J = 8.7\text{ Hz}$, 7-H), 7.97 (d, $J = 8.1\text{ Hz}$, 8-H), 8.46 (s, 4-H). Anal. Calcd for $\text{C}_{11}\text{H}_7\text{N}_2\text{Cl}$: C, 65.34; H, 3.49; N, 13.86. Found: C, 65.21; H, 3.63; N, 13.48%.

6-Methoxy-2-chloro-3-cyanoquinoline, 2c: Yield 78%, m.p. 157–60°C; IR (KBr): 2231 cm^{-1} ; ^1H NMR

(CDCl₃): δ 3.96 (s, OCH₃), 7.10 (d, *J* = 2.4 Hz, 5-H), 7.54 (dd, *J* = 2.7, 9.0 Hz, 7-H), 7.97 (d, *J* = 9.3 Hz, 8-H), 8.43 (s, 4-H); Anal. Calcd for C₁₁H₇N₂OCl: C, 60.54; H, 3.24; N, 12.85. Found: C, 60.35; H, 3.18; N, 12.90%.

7-Methyl-2-chloro-3-cyanoquinoline, 2d: Yield 80%, m.p. 142-45°C; IR (KBr): 2222 cm⁻¹; ¹H NMR (CDCl₃): δ 2.62 (s, CH₃), 7.52 (d, *J* = 8.1 Hz, 5-H), 7.78 (d, *J* = 8.4 Hz, 6-H), 7.85 (s, 8-H), 8.50 (s, 4-H); Anal. Calcd for C₁₁H₇N₂Cl: C, 65.34; H, 3.49; N, 13.86. Found: C, 65.40; H, 3.41; N, 13.78%.

7-Methoxy-2-chloro-3-cyanoquinoline, 2e: Yield 83%, m.p. 147°C; IR (KBr): 2229 cm⁻¹; ¹H NMR (CDCl₃): δ 3.99 (s, OCH₃), 7.44 (s, 8-H), 7.46 (d, *J* = 13.5 Hz, 6-H), 7.84 (d, *J* = 9.0 Hz, 5-H), 8.67 (s, 4-H); Anal. Calcd for C₁₁H₇N₂OCl: C, 60.54; H, 3.24; N, 12.85. Found: C, 60.46; H, 3.21; N, 12.78%.

8-Methyl-2-chloro-3-cyanoquinoline, 2f: Yield 79%, m.p. 95-97°C; IR (KBr): 2228 cm⁻¹; ¹H NMR (CDCl₃): δ 2.77 (s, CH₃), 7.59 (t, *J* = 7.5 Hz, 6-H), 7.74 (t, *J* = 7.2 Hz, 5-H, 7-H), 8.53 (s, 4-H); Anal. Calcd for C₁₁H₇N₂Cl: C, 65.34; H, 3.49; N, 13.86. Found: C, 65.41; H, 3.42; N, 13.90%.

8-Ethyl-2-chloro-3-cyanoquinoline, 2g: Yield 80%, m.p. 124°C; IR (KBr): 2231 cm⁻¹; ¹H NMR (CDCl₃): δ 1.36 (t, 7.74, *J* = 7.5 Hz, CH₃), 3.25 (q, *J* = 7.5 Hz, CH₂), 7.63 (t, *J* = 7.5 Hz, 6-H), 7.75 (t, *J* = 7.2 Hz, 5-H, 7-H), 8.53 (s, 4-H); Anal. Calcd for C₁₂H₉N₂Cl: C, 66.65; H, 4.20; N, 12.96. Found: C, 66.48; H, 4.28; N, 13.02%.

2-Chloro-3-cyano-5-phenylpyridine, 2h: Yield 73%, m.p. 150-52°C; IR (KBr): 223 cm⁻¹; ¹H NMR (CDCl₃): δ 7.50-7.54 (m, Ph-H), 8.15 (d, *J* = 2.7 Hz, 4-H), 8.79 (d, *J* = 2.7 Hz, 6-H); Anal. Calcd for C₁₂H₇N₂Cl: C, 67.28; H, 3.30; N, 13.09. Found: C, 67.34; H, 3.22; N, 12.98%.

2-Chloro-3-cyano-4-methyl-N-phenylpyrazole, 2i: Yield 77%, m.p. 105-07°C; IR (KBr): 2227 cm⁻¹; ¹H NMR (CDCl₃): δ 2.57 (s, CH₃), 7.50 (m, Ph-H); Anal. Calcd for C₁₂H₉N₂Cl: C, 66.65; H, 4.20; N, 12.96. Found: C, 66.48; H, 4.09; N, 13.04%.

3,4-Dimethoxy-benzonitrile, 2j: Yield 67%, m.p. 67-69°C; IR (KBr): 2226 cm⁻¹; ¹H NMR (CDCl₃): δ 3.90 (s, OCH₃), 3.94 (s, OCH₃), 6.90 (d, *J* = 8.4 Hz, 5-H), 7.26 (s, 2-H), 7.29 (d, *J* = 8.4 Hz, 6-H). Anal. Calcd for C₉H₈NO₂: C, 66.23; H, 5.56; N, 8.59. Found: C, 66.38; H, 5.48; N, 8.52%.

Acknowledgement

Authors thank Head, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi for providing spectral and analytical facilities.

References

- 1 Erman M B, Snow J W & Williams M J, *Tetrahedron Lett* 41, **2000**, 6749.
- 2 Chichiro M, Nagamoto H, Takemura L, Kitano K, Komatsu H, Sekiguchi K, Tabusa F, Mori T, Tominnaga M & Yobuuchi Y, *J Med Chem*, 38, **1995**, 353; (b) Serrano J L, Sierra T, Gonzalez Y, Bolm C, Weickhardt K & Magnus A, *J Am Chem Soc*, 117, **1995**, 8312; (c) Jnaneshwara G K, Deshpande V H, Lalithambika, Ravindranathan T & Bedekar A V, *Tetrahedron Lett*, 39, **1998**, 459; (d) Diana G D, Cutchiffe D, Volkots D L, Mallamo J P, Vescio N, Oglesby R C, Nitz T J, Wetzel J, Girand V, Pevear D C & Dutko F J, *J Med Chem*, 36, **1993**, 3240; (e) Khanna I K, Weier R M, Yu Y, Xu X D, Koazyk F J, Collins PW, Koboldt C M, Veenhuizen A W, Perkins W E, Caster J J, Maslerrer J L, Zhang Y Y, Gregory S A, Seibert K & Isakson P C, *J Med Chem*, 40, **1997**, 1634; (f) Medwid J B, Paul R, Baker J S, Brockman J A, Du M T, Hallett W A, Hanifin J W, Hardy R A, Tarrent M E, Torley I W & Wrenn S, *J Med Chem*, 33, **1990**, 1230; (g) Judkins B D, Allen D G, Cook T A, Evans B & Sardharwala T E, *Synth Commun*, 26, **1996**, 4351; (h) March J, Advanced Organic Chemistry, John Wiley & Sons, New York, **1992**, pp. 918-919 and literatures cited therein.
- 3 (a) March J, Advanced Organic Chemistry, John Wiley & Sons: New York, **1992**, pp. 1038-1039 and literatures cited therein; (b) Meshram H M, *Synthesis*, **1992**, 943; (c) Katritzky A R, Zhanmg G F & Fan W Q, *Org Prep Proc Int*, 25, **1993**, 315.
- 4 (a) Olah G A, & Keumi T, *Synthesis* **1979**, 112 and references cited therein; (b) Saednya A, *Synthesis*, **1982**, 190; (c) Bose D S, & Narsaiah A V, *Tetrahedron Lett*, 39, **1998**, 6533; (d) Kumar H M S, Reddy B V S, Reddy P T & Yadav J S, *Synthesis*, **1999**, 586.
- 5 Brackman W, & Smit P J, *Recl Trav Chim*, 82, **1963**, 757.
- 6 Parameswaran K N & Friedman O M, *Chem Ind*, **1965**, 988.
- 7 (a) Misono A, Osa T & Koda S, *Bull Chem Soc Jpn*, 40, **1967**, 287; (b) Talukdar S, Hsu J-L, Chou T-C & Fang J-M, *Tetrahedron Lett*, 42, **2001**, 1103.
- 8 Erman M B, Snow J W & Williams M J, *Tetrahedron Lett*, 41, **2000**, 6749.
- 9 (a) Singh R M, Srivastava A & Chandra A, *Indian J Chem*, 44B, **2005**, 2077; (b) Singh R M, Srivastava A & Singh M K, *Indian J Chem*, 45B, **2006**, 292; (c) Singh R M, Srivastava A & Chandra A, *Indian J Chem*, 46B, **2007**, 303; (d) Singh R M, Chandra A, Singh M K, *Synth Commun*, 37, **2007**, 1689; (e) Singh R M, Singh M K, Chandra A & Singh B, *Tetrahedron Lett*, 48, **2007**, 5987; (f) Singh R M & Srivastava A, *Indian J Chem*, 44B, **2005**, 1868.